One chip to rule them all? The Internet of Things and the next great era of hardware

It’s been almost 10 years since Apple unveiled the iPhone. Since that day, the smartphone has been the overwhelming driver of innovation in the technology industry. Cameras, Wi-Fi, batteries, touch sensors, baseband processors and memory chips — in less than a decade, these components have made stunning advances to keep up with consumer demand to have sleeker, more powerful devices every year.
For chip makers, the pressure has been to produce smaller, more powerful components for each generation of phones. Denser, faster, cheaper — these mantras have driven our industry for as long as most people can remember.
But there’s a new game in town. The smartphone era is not over, but the growth rate is slowing. The key growth driver in hardware could soon be the Internet of Things. Over thenext decade, this industry will churn out tens of billions of connected sensor devices. These will be used in every corner of the world — from highways to arteries — to gather new insights to help us live and work better.
This chapter will reshape the technology hardware industry in profound ways, and even reverse many of the changes brought about by the smartphone era. To understand how profound this shift could be, it’s important to know how past markets have shaped the way computers are built.

It started with the circuit board

Just a few short decades ago, computers filled entire rooms. In these early days, manufacturers produced each component separately and wired them together on a circuit board. You’d have memory in one part of the board, logic processing on another side, maybe a radio in the corner. Wires or copper traces connected each piece, and components could be easily added or removed from the system.
The “System on a Board” configuration worked for a while. But then computers began to shrink as scientists engineered smaller and smaller transistors. Transistors are like electric switches — the fundamental building blocks of modern computing.
In 1965, Gordon Moore, the founder of Intel, made a famous prediction (misleadingly labeled a “law”): Every 18-24 months, engineers would fit about twice as many transistors on a particular piece of silicon. Computer components started shrinking fast, and suddenly a lot of free space opened up on circuit boards.

The master chip

Engineers soon began to experiment with putting multiple functions on a single piece of silicon. Before long, they could get a whole computer onto that one piece of silicon, wrap it up nicely and market it as a single, all-inclusive package.
We call this “System on a Chip” (SoC). You probably have one in your smartphone. This tight integration of components carries some big advantages. With components packed closer together, signals can travel between them more quickly, which can increase processing speed.
SoCs are frequently cheaper too; instead of testing many components independently, you could run one set of tests on a single chip. And, of course, size matters. The consolidated package helped manufacturers like Apple and Samsung produce new generations of lighter, sleeker devices.
But there’s a big drawback. SoCs are manufactured on common process platforms in large manufacturing facilities called “fabs.” These mega-factories are able to produce hundreds of millions of chips per month.

Previous
Next Post »